

Advanced Driver Assistance Systems help to avoid collisions and represent the first step towards autonomous driving

- Driver Assistance Systems are state-of-the-art in new cars
- Siemens ADAS transfers this technology to trams:
 - –First step : collision avoidance system
 - Long-term target : autonomous driving
- Step-by-step iterations aligned with automotive developments

ADAS Automotive vs. ADAS Rail At first view automotive products seem to be easily usable

The Task

- Sense environment
- Assist driver or act autonomously

Used Sensors

Radar, Camera,

Detection task

- Detect other vehicles, obstacles, humans, animals etc
- Consider traffic signs, signals, rules and regulations

All the same?

- Youthful optimism : use automotive ADAS on rail ...
- Technology is compact, inexpensive, already available, certified

ADAS Automotive vs. ADAS Rail At closer inspection there are significant differences

Automotive applications and environments	Rail applications and environments
Protected highway	Complex urban environment incl. operation in pedestrian areas or at crowded stops
Road vehicles and pedestrians	Additional LRVs and buffer stops
Detection of road markings (white on black)	Track detection (black on black)
Road signs and signals	Additional rail signs and signals, differently located
Concrete/asphalt road	Additional grass and ballasted track Embedded rails and standard rails
	Proximity to fixed installations, e.g. fences, poles
	Trackside rail-specific installations, e.g. stations, switch cabinets
	Far lower brake performance (due to limited friction)
	Non-buckled passengers
	Unwanted "gap filling" by automobiles in dense traffic

ADAS Automotive vs. ADAS Rail The different applications require major adaptations for rail use

To use automotive components in rail applications, adaptations have to be done ...

- Automotive ADAS sensors are highly specialized
- → Automotive market is priority (very large quantities and R&D budgets)
- → Adaptation of automotive components : small Rail market to cover one-time cost
- → Rail adaptations take time due to priority of automotive sector
- → Rail roadmap aligned with automotive sector : following market segment

Significant benefit to use automotive baseline developments to leverage synergies

Siemens ADAS system Few components, straightforward installation, vehicle agnostic

Core components are already proven in automotive and the entire system performance is qualified for the use in rail

Camera mounted in cab

- Detects the track
- Detects objects and their location in front of the tram

Radar mounted in the front mask

- Detects objects by radar
- Measures object distance and velocity
- Fuses Camera and Radar data
- Determines if an object is a potential collision object

Control Unit mounted inside tram

- Interface between the Siemens
 Tram Assistant system and tram
- Generates collision warning and braking signals
- Cancels signals in case of driver override
- System diagnostics (error codes)

^{*} Source of pictures: Bosch Engineering

The Siemens Tram Assistant detects and warns of hazardous situations with trams, cars, trucks, busses, buffer stops

Use Case 1

Stationary cars, trucks, busses and trams at rear/front view

Use Case 2

Running or stopping cars, trucks, busses and trams at rear/front view

Use Case 3

Buffer stops, via attaching a radar reflector

Use Case 4 - under test

Completely visible and crossing pedestrians

Scenarios with potential high accident severity (e.g. tram-to-tram collisions) are covered. Other scenarios are under development or evaluation and will be available via software upgrades.

Pattern recognition - trained shapes

Principle of system response of Siemens Tram Assistant

Warning/braking depends on

- Speed of the Tram
- Distance to the object

System calculates

- Stopping distance → Automatic braking
- Warning distance → Warning signal

Principle of system response : Siemens ADAS

Camera View including system response strategy....

Object positioning laterally : Camera

Object positioning distance : Radar

Object type classification : Camera

Visualization of Camera View including system response strategy

Red : Objects detected by Radar

Green : Objects detected by Camera

Different levels of system integration for Siemens ADAS

Integration level **Medium**

Hardwired signal to open safety loop

Integration level

"Stand-alone-System" without integration : separate indicator/buzzer

Integration level High

SW Integration into train/brake control

Hardwired signal to initiate Full Service Brake. Driver can overrule the system reaction.

This system is a driver assistance system: Driver is responsible for driving by sight and should never rely on the system to respond

Low

Safety and efficiency – the key factors in public transport

Increased **safety** of all passengers and traffic participants

Lower repair costs by avoiding or reducing accident damage

Higher availability of trams thanks to reduction of accident frequency

Safety

Cost efficiency

Availability

Customer Feedback: Siemens Tram Assistant

Tram drivers show behavioral change

- → Awareness of supervision
- Conscious attempt to minimize system interference (incentive ?)
- → Higher focus on potential collision situations / geographical areas

Customers embrace new technology

- → Ulm and The Hague decided to retrofit their fleets (total 92 vehicles)
- → Bremen and Copenhagen ordered vehicles with ADAS (106 vehicles)
- Standard requirement in European Tram tenders

Automotive roadmap towards fully autonomous driving

Source: Bosch AG

Conclusion

- Assisted Driving for Trams is a reality
- Detecting Obstacles is easy: Responding correctly is hard
- Quick win to reduce severity of accidents on shared tracks